下載電子全文  
系統識別號 U0017-1201201116005295
論文名稱(中文) 利用正子湮滅光譜分析技術及分子模擬方法探討聚醯胺複合薄膜微結構
論文名稱(英文) Study on fine-structure of polyamide thin-film composite membrane by positron annihilation spectroscopy and molecular simulation
校院名稱 中原大學
系所名稱(中) 化學工程研究所
系所名稱(英) Graduate Institute of Chemical Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 黃韻璇
研究生(英文) Yun-Hsuan Huang
電子信箱 shanrhuang26@gmail.com
學號 9771006
學位類別 碩士
語文別 中文
口試日期
論文頁數 121頁
指導教授 指導教授-賴君義
指導教授-李魁然
中文關鍵字 聚醯胺高分子  分子模擬  複合薄膜  正子湮滅技術  界面聚合 
英文關鍵字 molecualr simulation  polyamide  positron annihilaiton spectroscopy  interfacial polymerization  composite membrane 
學科別分類
中文摘要 本研究利用不同結構之胺單體(HA、DAPE、DAPL)與不同結構之醯氯單體 (SCC、tNBDC),於改質的聚丙烯腈 (modified polyacrylonitrile, mPAN) 非對稱基材薄膜表面上進行界面聚合反應,製備一系列聚醯胺/聚丙烯腈複合薄膜 ( PA/mPAN TFC membrane ),應用於滲透蒸發分離程序分離醇類水溶液。
研究中利用全反射式傅立葉轉換紅外線光譜儀 (ATR-FTIR)、X射線光電子能譜儀 (XPS) 與掃描式電子顯微鏡 (SEM) 來鑑定聚醯胺聚合層的化學結構與形態。利用對水接觸角 (contact angle) 試驗及原子力顯微鏡 (AFM) 測試聚醯胺複合薄膜表面的親水性及粗糙度。
研究中探討單體結構與聚合條件(水相與有機相單體溶液濃度、水相處理時間、聚合時間等)對滲透蒸發分離效能的影響。為了瞭解進料膨潤效應對聚醯胺複合薄膜聚合層微細結構的影響,利用正子湮滅光譜分析技術(Positron Annihilation Spectroscopy, PAS)偵測聚醯胺聚合層在乾燥狀態下或在進料溶液浸溼狀態下的自由體積變化,並與滲透蒸發分離效能作關聯。另外,嘗試利用分子模擬(Molecular Simulation)技術理論探討聚醯胺聚合層在分子尺度下,進料膨潤效應對其結構特性的影響。
文中比較兩種不同結構聚醯胺聚合層(DAPE-SCC、DAPE-tNBDC)受到進料膨潤對自由體積變化及分離效能的差異。由正子湮滅光譜分析結果顯示,聚醯胺聚合層在濕潤環境下,受進料膨潤的影響具有較大尺寸的自由體積,而在濕潤環境下的自由體積大小(free volume size)及數目(intensity)與分離效能有良好的關聯性。另外,由正子湮滅光譜分析結果亦顯示,兩種不同結構的聚合層顯示出不同的膨潤程度,研究中嘗試利用分子模擬技術分析微觀尺度下,高分子鏈在濕潤環境中的擾動情形。由分子模擬分析技術結果顯示,具有懸垂基團(norbornylene)的聚醯胺聚合層結構,在濕潤環境下高分子鏈整體的擾動性較低,但懸垂基團本身的擾動性則較佳;推估造成tNBDC系列具有較大膨潤程度的原因是由懸垂基團的擾動貢獻為主導。研究結果顯示,藉由正子湮滅光譜分析技術及分子模擬分析技術與滲透蒸發分離效能有良好的相關性。
效能測試結果顯示,當mPAN基材薄膜浸泡於0.1 wt% DAPL水溶液中60秒,而後表面接觸0.5 wt% SCC/toluene有機溶液進行界面聚合反應15秒,所製得之複合薄膜於25oC下進行滲透蒸發程序分離90 wt%乙醇水溶液有較理想之分離效能,其透過量約為590 g/m2h,而透過水濃度約為96.7 wt%。

英文摘要 To improve the permeation rate of polyamide (PA) membrane, a series of polyamide thin-film composite (TFC) membranes was prepared via interfacial polymerization of various water-soluble amine monomers (HA, DAPE and DAPL) and various acyl chloride monomers (SCC and tNBDC) on the surface of asymmetric modified polyacrylonitrile (mPAN) membranes. The PA/mPAN composite membranes were applied to the pervaporation separation of aqueous alcohol solutions. Attenuated total reflection infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were used to characterize the chemical structures and morphologies of the polyamide active layers of the composite membranes. The water contact angle measurement and the atomic force microscopy (AFM) were used to characterize the surface hydrophilicity and surface roughness of the composite membranes.
The effect of the chemical structure of the monomers and the interfacial polymerization conditions, such as the monomer concentration of aqueous and organic solutions, the immersion time of aqueous solution, the polymerization time on the pervaporation performance were investigated. In addition, the influences of the membrane swelling on the changes of membrane fine-structure and pervaporation performance were systematically analyzed by positron annihilation spectroscopy (PAS) and molecular dynamics (MD) simulation.
From the result of PAS analysis, the swollen polyamide active layer showed a large o-Ps lifetime than the dry active layer, and the PAS analysis at wet state was consistent with the pervaporation performance of the polyamide TFC membranes. The theoretical analysis by the MD simulation technique was showed that the side chain fluctuation of tNBDC would be improved more obviously than that in the SCC membrane after swollen, which led to from the more effective free volume in the wet tNBDC membrane.
It was found that the DAPL-SCC/mPAN thin-film composite membranes prepared by immersing mPAN into 0.1 wt% aqueous DAPL solution for 60 sec and then contacting it with 0.5 wt% SCC in toluene organic solution for 15 sec showed the best pervaporation performance of 90 wt% ethanol aqueous solution at 25oC, the permeation rate was about 590 g/m2h and the water concentration in permeate was about 96.7 wt%.

論文目次 摘要 I
Abstract III
目錄 V
圖索引 IX
表索引 XV
第一章 緒論 XV
第一章 緒論 1
1-1 薄膜簡介 1
1-2 薄膜分離程序 3
1-3 滲透蒸發分離程序 5
1-4 複合薄膜之製備 6
1-4-1 基材膜之製備 7
1-4-2 緻密層之製備 7
1-5 聚醯胺高分子 9
1-6 正子湮滅光譜分析技術簡介 12
1-6-1 正子湮滅時間(Positron Annihilation Lifetime, PAL)分析儀 14
1-6-2 可變單一能量慢速正子束 (Variable Monoenergy Slow Positron Beam, VMSPB) 分析儀 15
1-7 分子模擬簡介 18
1-7-1 分子模擬計算方法與原理 18
1-7-2 自由體積分率之計算 21
第二章 文獻回顧 23
2-1 界面聚合薄膜簡介 23
2-1-2 正子湮滅光譜分析技術在高分子薄膜上的應用 25
2-2 分子模擬技術在高分子薄膜上的應用 27
2-3 研究動機 29
第三章 實驗 31
3-1 實驗藥品 31
3-2 實驗儀器 32
3-3 薄膜的製備 33
3-3-1 基材膜的製備 33
3-3-2 複合薄膜的製備 34
3-4 薄膜鑑定 35
3-4-1 掃描式電子顯微鏡 ( Scanning Electron Spectroscopy, SEM ) 35
3-4-2全反射式傅立葉轉換紅外線光譜儀 ( Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy, ATR-FTIR ) 36
3-4-3 原子力顯微鏡 ( Atomic Force Microscopy, AFM ) 37
3-4-4 接觸角量測儀 ( Contact Angle Meter ) 39
3-4-5 X-ray 繞射分析儀 (X-ray Diffractometer, XRD ) 39
3-4-5 X射線光電子能譜儀 (XPS) 40
3-4-6 薄膜密度測試 42
3-4-7 都卜勒展寬能量光譜 ( Doppler-broadened Energy Spectrum, DBES ) 43
3-4-8 正子煙滅時間光譜 ( Positron Annihilation Lifetime Spectroscopy, PALS ) 44
3-4-9 滲透蒸發測試 45
第四章 分子模擬理論方法 47
4-1 界面聚合複合薄膜聚合層模型之建立 47
4-2 分子作用立場 50
4-3 能量最小化與週期性邊界條件 53
4-3-1 能量最小化 53
4-3-2 週期性邊界條件 54
4-4 分子動態模擬 56
4-4-1 初始條件設定 56
4-4-2 NVT與NPT系集 57
4-4-3 動態計算 57
4-5 物理量分析 59
4-5-1 自由體積與容通體積分率 59
4-5-2 徑向分佈函數分析 60
第五章 結果與討論 61
5-1 聚醯胺複合薄膜聚合層之結構設計與鑑定 61
5-2 聚醯胺複合薄膜之表面粗糙度與親水性 69
5-3 正子湮滅光譜分析技術應用於自由體積之估計 71
5-3-1 都卜勒展寬能量光譜分析 71
5-3-2 正子湮滅時間光譜分析 78
5-4 分子動態模擬技術應用於自由體積之估計 82
5-4-1 聚醯胺聚合層模型確認 82
5-4-2 不同環境下聚合層高分子之徑向分佈函數分析 86
5-5 有機相溶液濃度對滲透蒸發分離效能的影響 92
5-6 水相溶液濃度對滲透蒸發分離效能的影響 94
5-7 聚合時間對滲透蒸發分離效能的影響 95
5-8 水相溶液浸泡時間對滲透蒸發分離效能的影響 96
第五章 結論 98
第六章 參考文獻 100

圖索引
第一章 緒論
Figure 1-1 Schematic representation of various membrane cross-sectional morphologies. 2
Figure 1-2 Schematic representation of the nominal pore size and best theoretical model for the principal membrane separation processes. 3
Figure 1-3 Schematic representation of a two-phase system separated by a membrane. 4
Figure 1-4 The principle of pervaporation. 6
Figure 1-5 Schematic diagram of composite membrane. 7
Figure 1-6 Schematic drawing of the formation of a composite membrane via interfacial polymerization. 8
Figure 1-7 The scheme of chemical reaction for synthesized polyamide from interfacial polymerization of TETA and TMC onto the surface of the mPAN membrane. 8
Figure 1-8 Diagrams of polymer film growth at liquid interfaces. 11
Figure 1-9 Mean stopping distance and stopping profiles for positron as a function of incident energy. 14
Figure 1-10 Normalized positron annihilation lifetime (PAL) spectra. 15
Figure 1-11 (a) Doppler broadening energy spectrum (DBES, top) and definitions of S, W, and R (3/2 ratio) parameters from DBES. S is ratio of total counts from central region, W is the ratio of wing region, to the total 511 keV annihilation counts, respectively while R is the ratio of 3/2 annihilation. 16
Figure 1-12 (b) continuous. 17

Figure 1-13 Principal view of the two approaches to connect free grid points in an example free volume region. 22

第三章 實驗
Figure 3-1 The chemical structure of amine monomers, (a) Hydrazine (HA);(b) 1,3-Diaminopropan (DAPE);(c) 1,3-Diamino-2-propanol (DAPL). 34
Figure 3-2 The chemical structure of acyl chloride monomers, (a) Succinyl chloride (SCC);(b) trans-3,6-Endomethylene-1,2,3,6-tetrahydrophtgaloyl chloride (tNBDC) 35
Figure 3-3 Illustration of interfacial polymerization procedure. 35
Figure 3-4 The schematic diagram of the photoelectric effect. 36
Figure 3-5 The apparatus ATR-FTIR spectroscopy. 37
Figure 3-6 The schematic diagram of AFM. 39
Figure 3-7 The relationship between force and distance of adjacent atoms. 39
Figure 3-8 The schematic diagram of the photoelectric effect. 42
Figure 3-9 The schematic diagram of XPS. 42
Figure 3-10 Bulk density instrument. 43
Figure 3-11 The schematic diagram of pervaporation apparatus. 46

第四章 理論方法
Figure 4-1 The chemical structure of polyamide active layers, (a) DAPE-SCC;(b) DAPE-tNBDC. 49
Figure 4-2 The bonding and non-bonding energy terms used in COMPASS force-field. 52
Figure 4-3 Schematic presentation of primary cell and image cell in the periodic boundary condition system. 55
Figure 4-4 Schematic presentation of (a) Verlet algorithm and (b) Leapfrog algorithm. 59

第五章 結果與討論
Figure 5-1 ATR-FTIR spectra of the polyamide thin-film composite membranes. (a) modified PAN support (mPAN);(b) DAPL-SCC/mPAN composite membrane;(c) DAPE-SCC/mPAN composite membrane;(d) HA-SCC/mPAN composite membrane. (Polymerization condition:immersion in 1.0 wt% amine solution for 3 min and then contacting with 0.5 wt% SCC solution for 3 min.) 63
Figure 5-2 SEM images of the surface and cross-section morphologies of the thin-film composite membranes. (a)(b) modified PAN support;(c)(d) HA-SCC/mPAN composite membrane;(e)(f) DAPE-SCC/mPAN composite membrane;(g)(h) DAPL-SCC/mPNN composite membrane. (Polymerization condition:immersion in 1.0 wt% amine solution for 3min and then contacting with 0.5 wt% SCC solution for 3 min.) 64
Figure 5-3 ATR-FTIR spectra of the polyamide thin-film composite membranes. (a) modified PAN support (mPAN);(b) DAPL-tNBDC/mPAN composite membrane;(c) DAPE-tNBDC/mPAN composite membrane;(d) HA-tNBDC/mPAN composite membrane. (Polymerization condition:immersion in 1.0 wt% amine solution for 3min and then contacting with 0.5 wt% tNBDC solution for 3 min.) 66
Figure 5-4 SEM images of the surface and cross-section morphologies of the thin-film composite membranes. (a)(b) modified PAN support;(c)(d) HA-tNBDC/mPAN composite membrane;(e)(f) DAPE-tNBDC/mPAN composite membrane;(g)(h) DAPL-tNBDC/mPAN composite membrane. (Polymerization condition:immersion in 1.0 wt% amine solution for 3 min and then contacting with 0.5 wt% tNBDC solution for 3 min.) 67
Figure 5-5 S parameter as a function of positron incident energy for polyamide thin-film composite membranes. (■) -SCC/mPAN;(▲) DAPL-SCC/mPAN. (Polymerization condition:immersion in 1.0 wt% amine monomers solution for 3 min and then contacting with 0.5 wt% acyl chloride monomers solution for 3 min.) 74
Figure 5-6 S parameter as a function of positron incident energy for polyamide thin-film composite membranes. (■) HA-tNBDC/mPAN;(●) DAPE-tNBDC/mPAN;(▲) DAPL-tNBDC/mPAN. (Polymerization condition:immersion in 1.0 wt% amine monomers solution for 3 min and then contacting with 0.5 wt% acyl chloride monomers solution for 3 min.) 75
Figure 5- 7 Fractional free volume in DAPE-SCC polyamide active layer as function of time at dry state. (a) NPT ensemble for 300ps;(b) NVT ensemble for 500ps. 83
Figure 5- 8 Fractional free volume in DAPE-SCC polyamide active layer as function of time at wet state. (a) NPT ensemble for 300ps;(b) NVT ensemble for 500ps. 84
Figure 5- 9 Fractional free volume in DAPE-tNBDC polyamide active layer as function of time at dry state. (a) NPT ensemble for 300ps;(b) NVT ensemble for 500ps. 84
Figure 5- 10 Fractional free volume in DAPE-tNBDC polyamide active layer as function of time at dry state. (a) NPT ensemble for 300ps;(b) NVT ensemble for 500ps. 84
Figure 5-11 The RDF of C-C atom pairs on the main chains of the DAPE-SCC polyamide active layer. 88
Figure 5-12 The RDF of C-C atom pairs on the main chains of the DAPE-tNBDC polyamide active layer. 88
Figure 5-13 The XRD spectra of aromatic polyamide active layer. 89
Figure 5-14 The RDF of norbornylene on the side chains of the DAPE-NBDC polyamide active layer. 90
Figure 5-15 The RDF of O-O atom pairs on the main chains of the DAPE-SCC polyamide active layer. 91
Figure 5-16 The RDF of O-O atom pairs on the main chains of the DAPE-tNBDC polyamide active layer. 91
Figure 5-17 Effect of the concentration of the SCC solution on the pervaporation performance of 90 wt% aqueous ethanol solution through the DAPL-SCC/mPAN membranes at 25oC. (Polymerization condition:mPAN support was immersing in 1.0 wt% DAPL solution for 3 min and then contacting with a serial concentration of SCC solution for 3 min.) 94
Figure 5-18 Effect of the concentration of the aqueous solution on the pervaporation performance of 90 wt% aqueous ethanol solution through the DAPL-SCC/mPAN membranes at 25oC. (Polymerization condition:mPAN support was immersing in a serial concentration of DAPL solution for 3 min and then contacting with 0.5 wt% SCC solution for 3 min.) 95
Figure 5-19 Effect of the polymerization time on the pervaporation performance of 90 wt% aqueous ethanol solution through the DAPL-SCC/mPAN membranes at 25oC. (Polymerization condition:mPAN support was immersing in 0.1 wt% DAPL solution for 3 min and then contacting with 0.5 wt% SCC solution for a serial polymerization time.) 96
Figure 5-20 Effect of the immersion time of DAPL solution on the pervaporation performance of 90 wt% aqueous ethanol solution through the TFC membranes at 25oC. (Polymerization condition:mPAN support was immersing in 0.1 wt% DAPL solution for a serial immersion time and then contacting with 0.5 wt% SCC solution for 15 sec ) 97





表索引
第一章 緒論
Table 1-1 Driving forces and the two-phase systems separated by membranes for different membrane processes. 4
Table 1-2 Comparison of requirements for low-temperature and thermal polycondensation method. 12

第三章 實驗
Table 3-1 The comparison between operating model of AFM. 38

第四章 理論方法
Table 4-1 Reactant pairs of polyamide active layers. 48
Table 4-2 Model construction parameters of MD simulation for dry state. 49
Table 4-3 Model construction parameters of MD simulation for wet state. 49

第五章 結果與討論
Table 5-1 Effect of the chemical structure on pervaporation separation of 90 wt% ethanol aqueous solution through the polyamide/mPAN thin-film composite membrane at 25oC. 68
Table 5-2 Effect of the chemical structure on surface roughness and surface hydrophilicity of the polyamide/mPAN thin-film composite membrane. 70
Table 5-3 Surface atomic composition of the active layer and their concentration ratios for support and thin-film composite membranes. 77
Table 5-4 o-Ps lifetime ( ) and relative intensity (I3) of free-standing polyamide membranes. 79
Table 5-5 Compare of the fractional free volume (FFV) between dry state and wet state by the PAS and molecular dynamics simulation. 85

參考文獻 [1] M. Mulder, Basic principle of membrane technology, Kluer Academic Publisher, The Netherlands, (1996).
[2] S.P. Nunes, K.V. Peinimann, Membrane technology in the chemical industry, Wiley, Germany, (2003).
[3] U.S. Toti, T.M. Aminabhavi, Different viscosity grade sodium alginate and modified sodium alginate membranes in pervaporation separation of water + acetic acid and water + isopropanol mixtures, Journal of Membrane Science, 228 (2004) 199-208.
[4] M.Y. Teng, K.R. Lee, S.C. Fan, D.J. Liaw, J. Huang, J.Y. Lai, Development of aromatic polyamide membranes for pervaporation and vapor permeation, Journal of Membrane Science, 164 (2000) 241-249.
[5] H.A. Tsai, S.C. Chen, W.L. Chou, K.R. Lee, M.C. Yang, J.Y. Lai, Pervaporation of water/alcohol mixtures through chitosan/cellulose acetate composite hollow fiber membranes, Journal of Applied Polymer Science, 94 (2004) 1562-1568.
[6] J. Huang, Y.C. Wang, C.L. Li, K.R. Lee, S.C. Fan, T.T. Wu, J.Y. Lai, Dehydration of water-alcohol mixtures by pervaporation and vapor permeation through surface resintering expanded poly(tetrafluoroethylene) membranes, European Polymer Journal, 38 (2002) 179-186.
[7] 李魁然, 滲透蒸發薄膜研究-成膜與改質, 中原大學化學工程學系博士學位論文, (1993).
[8] L.T. Rozelle, J.E. Cadotte, K.E. Cobian, C.V.K. Jr., Nonpolysaccharide membranes for reverse osmosis:NS-100 membranes, in S. Sourirajan (Ed.), Reverse Osmosis and Synthetic Membranes, National Research Council Canada, Ottawa, (1977).
[9] 黃書賢, 界面聚合聚醯胺複合薄膜應用於滲透蒸發分離程序之研究, 中原大學化學工程學系博士學位論文, (2008).
[10] 范舒晴, 聚醯胺與聚醯亞胺膜於滲透蒸發與蒸氣揮發之研究, 中原大學化學工程學系博士學位論文, (2004).
[11] P.W. Morgan, Condensation Polymer:By Interfacial and Solution Method, Interscience Publishers, NY, (1965).
[12] H.M. Chen, W.S. Hung, J.H. Lo, S.H. Huang, M.L. Cheng, G. Liu, K.R. Lee, J.Y. Lai, Y.M. Sun, C.C. Hu, R. Suzuki, T. Ohdaira, N. Oshima, Y.C. Jean, Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy:layer structure from interfacial polymerization, Macromolecules, 40 (2007) 7542-7557.
[13] Y.C. Jean, P.E. Mallon, D.M. Schrader, Principles and Applications of Positron and Positronium Chemistry, World Scientific, Singapore, (2003).
[14] D.M. Schrader, Y.C. Jean, Positron and Positronium Chemistry, Elsevier Science, Amsterdam, (1988).
[15] J. Algers, R. Suzuki, T. Ohdaira, F.H.J. Maurer, Characterization of free volume and density gradients fo polystyrene surfaces by low-energy positron lifetime measurements, Polymer, 45 (2004) 4533-4539.
[16] H. Cao, R. Zhang, J.P. Yuan, C.M. Huang, Y.C. Jean, R. Suzuki, T. Ohdaira, B. Nielsen, Free-volume hole model for positronium formation in polymers:surface studies, Journal of Physics:Condensed Matter, 10 (1998) 10429-10422.
[17] Y.C. Jean, J. Zhang, H. Chen, Y. Li, G. Liu, Psitron annihilation spectroscopy for surface and interface studies in nanoscale polymeric films, Spectrochimica Acta Part A, 61 (2005) 1683-1691.
[18] 楊小震, 分子模擬與高分子材料, 科學出版社, 北京, (2002).
[19] M.H. Hoffmann D., Yu Yampolskii, V. Khotimskii, V. Shantarovich, Free volume distrubution in ultrahigh and lower free volume polymers: comparison between molecular modeling and positron lifetime studies, Macromolecules, 35 (2002) 2129-2140.
[20] X.Y. Wang, K.M. Lee, Y. Lu, M.T. Stone, I.C. Sanchez, B.D. Freeman, Cavity size distributions in high free volume glassy polymers by molecular simulation, Polymer, 45 (2004) 3907-3912.
[21] S.Y. Kwak, S.G. Jung, Y.S. Yoon, D.W. Ihm, Details of surface features in aromatic polyamide reverse osmosis membranes characterized by scanning electron and atomic force microscopy, Journal of Polymer Science Part B-Polymer Physics, 37 (1999) 1429-1440.
[22] S.Y. Kwak, Relationship of relaxation property to reverse osmosis permeability in aromatic polyamide thin-film-composite membranes, Polymer, 40 (1999) 6361-6368.
[23] S.Y. Kwak, S.G.Jung, S.H. Kim, Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films, Environmental Science and Technology, 35 (2001) 4334-4340.
[24] A. Prakash Rao, S.V. Joshi, J.J. Trivedi, C.V. Devmurari, V.J. Shah, Structure-performance correlation of polyamide thin film composite membranes: effect of coating conditions on film formation, Journal of Membrane Science, 211 (2003) 13-24.
[25] V. Freger, Swelling and morphology of the skin layer of polyamide composite membranes:an atomic force microscopy study, Environmental Science and Technology, 38 (2004) 3168-3175.
[26] Z. Yong, Y. Sanchuan, L. Meihong, G. Congjie, Polyamide thin film composite membrane prepared from m-phenylenediamine and m-phenylenediamine-5-sulfonic acid, Journal of Membrane Science, 270 (2006) 162-168.
[27] P.S. Singh, S.V. Joshi, J.J. Trivedi, C.V. Devmurari, A.P. Rao, P.K. Ghosh, Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions, Journal of Membrane Science, 278 (2006) 19-25.
[28] Y. Jin, Z. Su, Effects of polymerization conditions on hydrophilic groups in aromatic polyamide thin films, Journal of Membrane Science, 330 (2009) 175-179.
[29] S.H. Huang, W.L. Lin, D.J. Liaw, C.L. Li, S.T. Kao, D.M. Wang, K.R. Lee, J.Y. Lai, Characterization, transport and sorption properties of poly(thiol ester amide) thin-film composite pervaporation membranes, Journal of Membrane Science, 322 (2008) 139-145.
[30] S.H. Huang, C.L. Li, C.C. Hu, H.A. Tsai, K.R. Lee, J.Y. Lai, Polyamide thin-film composite membranes prepared by interfacial polymerization for pervaporation separation, Desalination, 200 (2006) 387-389.
[31] 謝昀穎, 新型超薄滲透蒸發複合膜之研究, 中原大學化學工程學系碩士學位論文, (2008).
[32] W.S. Hung, C.H. Lo, M.L. Cheng, H. Chen, G. Liu, L. Chakka, D. Nanda, K.L. Tung, S.H. Huang, K.R. Lee, J.Y. Lai, Y.M. Sun, C.C. Yu, R. Zhang, Y.C. Jean, Polymeric membrane studied using slow positron beam, Applied Surface Science, 255 (2008) 201-204.
[33] S.H. Huang, W.S. Hung, D.J. Liaw, C.L. Li, S.T. Kao, D.M. Wang, M.D. Guzman, C.C. Hu, Y.C. Jean, K.R. Lee, J.Y. Lai, Investigation of multilayer pervaporation membrane by positron annihilaiton spectroscopy, Macromolecules, 41 (2008) 6438-6443.
[34] C.H. Yu, I. Kusumawardhana, J.Y. Lai, Y.L. Liu, PTFE/polyamide thin-film composite membranes using PTFE films modified with ethylene diamine polymer and interfacial polymerization:Preparation and pervaporation application, Journal of Collid International Science, 336 (2009) 260-267.
[35] S.H. Huang, W.S. Hung, D.J. Liaw, C.H. Lo, W.C. Chao, C.C. Hu, C.L. Li, K.R. Lee, J.Y. Lai, Interfacially polymerized thin-film composite polyamide membranes: Effects of annealing processes on pervaporative dehydration of aqueous alcohol solutions, Separation and Purification Technology, 72 40-47.
[36] S.H. Huang, W.S. Hung, D.J. Liaw, H.A. Tsai, G.J. Jiang, K.R. Lee, J.Y. Lai, Positron annihilation study on thin-film composite pervaporation membranes: Correlation between polyamide fine structure and different interfacial polymerization conditions, Polymer, 51 1370-1376.
[37] D. Hofmann, M. Heuchel, Y. Yampolskii, V. Khotimskii, V. Shantarovich, Free volume distributions in ultrahigh and lower free volume polymers: Comparison between molecular modeling and positron lifetime studies, Macromolecules, 35 (2002) 2129-2140.
[38] D. Hofmann, M. Entrialgo-Castano, A. Lerbret, M. Heuchel, Y. Yampolskii, Molecular modeling investigation of free volume distributions in stiff chain polymers with conventional and ultrahigh free volume: Comparison between molecular modeling and positron lifetime studies, Macromolecules, 36 (2003) 8528-8538.
[39] S.T. Kao, Y.H. Huang, K.S. Liao, W.S. Hung, K.S. Chang, M. De Guzman, S.H. Huang, D.M. Wang, K.L. Tung, K.R. Lee, J.Y. Lai, Applications of positron annihilation spectroscopy and molecular dynamics simulation to aromatic polyamide pervaporation membranes, Journal of Membrane Science, 348 (2010) 117-123.
[40] K.S. Chang, Y.H. Huang, K.R. Lee, K.L. Tung, Free volume and polymeric structure analyses of aromatic polyamide membranes: A molecular simulation and experimental study, Journal of Membrane Science, 354 (2010) 93-100.
[41] X.Y. Wang, P.J.I. Veld, Y. Lu, B.D. Freeman, I.C. Sanchez, A molecular simulation study of cavity size distributions and diffusion in para and meta isomers, Polymer, 46 (2005) 9155-9161.
[42] S. Urata, J. Irisawa, A. Takada, W. Shinoda, S. Tsuzuki, M. Mikami, Molecular dynamics study of the methanol effect on the membrane morphology of perfluorosulfonic ionomers, Journal of Physical Chemistry B, 109 (2005) 17274-17280.
[43] Q.G. Zhang, Q.L. Liu, Y. Chen, J.Y. Wu, A.M. Zhu, Microstructure dependent diffusion of water-ethanol in swollen poly(vinyl alcohol): A molecular dynamics simulation study, Chemical Engineering Science, 64 (2009) 334-340.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-31起公開。


  • 學期間:週一~週五 8:30-12:00 am;1:30-5:00 pm
    寒暑假:週一~週四 9:00-12:00 am;1:30-4:30 pm
    聯絡電話:03-2652855 或 03-2652851
    電子郵件:lib.thesis@cycu.edu.tw