下載電子全文  
系統識別號 U0017-2403201415023872
論文名稱(中文) 高分子分離薄膜微結構分析: 正電子湮滅光譜技術結合分子動態模擬
論文名稱(英文) Analysis of Polymeric Separation Membrane Microstructure: Positron Annihilation Spectroscopy Correlated with Molecular Dynamics Simulation
校院名稱 中原大學
系所名稱(中) 化學工程研究所
系所名稱(英) Graduate Institute of Chemical Engineering
學年度 102
學期 1
出版年 103
研究生(中文) 黃韻璇
研究生(英文) Yun-Hsuan Huang
電子信箱 shanrhuang26@gmail.com
學號 9902101
學位類別 博士
語文別 中文
口試日期
論文頁數 161頁
指導教授 指導教授-賴君義
指導教授-李魁然
中文關鍵字 聚醯亞胺薄膜、聚醯胺複合膜、聚電解質錯合物複合膜、滲透蒸發、正電子湮滅光譜分析儀、分子動態模擬 
英文關鍵字 polyelectrolyte complex membrane  polyamdie composite membrane  polyimide membrane  positron annihilation spectroscopy  pervaporation  molecular dynamics simulation 
學科別分類
中文摘要 本研究製備化學結構相異的聚醯亞胺薄膜、聚醯胺複合膜以及聚電解質錯合物複合膜,應用於滲透蒸發分離乙醇水溶液,探討高分子化學結構變化對分離效能之影響。為探討進料溶液膨潤效應對高分子薄膜微結構與分離效能的影響,利用正電子湮滅光譜(Positron annihilation spectroscopy,PAS)技術,探討高分子薄膜微觀結構,包含自由體積的分率、尺寸、數量及分佈等,對滲透蒸發分離效能的影響。同時,以分子動態模擬(Molecular dynamics simulation,MD simulation)技術,預測及分析高分子薄膜之微結構特徵,包含自由體積分率(FFV)、容通體積分率(FAV)、自由體積形態、自由體積相當直徑(Deq)分佈圖與自由體積形狀分佈圖等,並以徑向分布函數圖、扭曲角分佈圖及均方位移圖來探討高分子鏈擾動行為。結合理論預測與實驗分析的結果,與滲透蒸發分離效能進行關聯。
首先,針對三種化學結構相異之聚醯亞胺薄膜,探討其微結構變化對滲透蒸發分離效能之影響。實驗結果顯示,在乾燥環境下,隨著懸垂基團尺寸的增加,高分子主鏈的擾動性受到抑制,使分子鏈不易堆疊排列,形成較大的自由體積空間,同時,懸垂基團上的側基及末端基團,在空間中擾動及旋轉能力提升,使得較小鏈段可在大的空間中排列堆疊,最終造成整體自由體積尺寸下降。薄膜受進料溶液膨潤後,其微結構變化甚鉅,實驗結果指出,薄膜之膨潤程度由大至小依序為:9Ph-6FDA>TPA-6FDA>ODA-6FDA。其中9Ph-6FDA薄膜受進料影響最大的是主鏈結構,而TPA-6FDA薄膜則為二胺部分之氮原子連結鏈段。由滲透蒸發實驗結果可知,ODA-6FDA薄膜因膨潤程度最小,故有最高的透過水濃度。
為改善緻密薄膜低透過量的缺點,將薄膜之緻密結構型態轉變為複合結構型態。以界面聚合法,製備化學結構相異聚醯胺複合膜,探討聚醯胺聚合層微結構變化對滲透蒸發分離效能之影響。實驗結果顯示,在乾燥環境下,DAPE-tNBDC聚醯胺聚合層結構之懸垂基團norbornylene的埋入效應,使分子鏈堆疊更緊密,故其自由體積尺寸較DAPE-SCC/mPAN複合膜小。在濕潤環境下,由於DAPE-tNBDC聚合層之norbonylene的擾動程度高於DPAE-SCC聚合層的分子鏈,造成DAPE-tNBDC聚合層有較高的膨潤程度。關聯聚醯胺複合膜微結構分析結果與其滲透蒸發效能發現,DAPE-tNBDC聚合層在進料溶液膨潤狀態下,分子鏈擾動程度上升,使得自由體積尺寸增加,造成DAPE-tNBDC/mPAN複合膜之透過水濃度(91.2 wt%)較DAPE-SCC/mPAN複合膜(96.3wt%)低。由自由體積形狀因子分析結果可知,DAPE-tNBDC聚合層之自由體積形狀的連通性較DAPE-SCC聚合層低,造成兩者間之透過量差異不大,約550 g/m2h。
為提升滲透蒸發程序之透過水濃度,以含有離子交聯結構之聚電解質錯合物複合膜,應用於滲透蒸發分離程序,探討取代基團碳鏈長度相異之聚電解質錯合物複合膜微結構變化對滲透蒸發分離效能的影響。實驗結果顯示,在乾燥環境下,在立體障礙與分子鏈擾動伴隨埋入效應的競爭下,隨著聚陽離子電解質取代基碳數的增加,自由體積尺寸有先上升而後下降的趨勢。而在濕潤環境下,當取代基團愈大時,聚陽離子電解質主鏈的擾動性受到抑制,堆疊排列效率降低,但同時,側鏈的擾動性則呈現上升的趨勢,最終造成自由體積尺寸隨聚陽離子電解質取代基碳數的增加而增加。不論是在乾燥或濕潤環境下,具有強陰電性及含有許多未配對電子對之聚電解質錯合物,在進行正電子湮滅光譜量測時,會產生捕捉(quenching)及抑制(inhibition)效應,導致整體的自由體積數量有減少之趨勢。關聯聚電解質錯合物複合膜微結構分析結果與其滲透蒸發效能發現,隨著聚陽離子電解質取代基碳數的增加,透過量有逐漸上升的趨勢,而透過水能度則些微下降。
本研究成功的以正電子湮滅光譜技術結合分子動態模擬的方法,探討高分子薄膜之微結構變化對滲透蒸發分離效能之影響,研究成果將有利於薄膜結構設計與分離效能之預測。




英文摘要 In this study, various membranes of different chemical structures were fabricated: polyimide membrane, polyamide composite membrane, and polyelectrolyte complex composite membrane. The objective was to investigate the effect of varying polymeric membrane microstructures on its pervaporation performance in dehydrating a 90 wt% aqueous ethanol mixture. Positron annihilation spectroscopy was adopted to explore the relationship between the microstructure and the separation performance of the membrane under the swelling effect. The polymeric membrane microstructural properties were analyzed: fractional free volume, free volume size, free volume intensity, and free volume distribution. Each of these properties was correlated with the separation performance. By molecular dynamics simulation, the polymeric membrane microstructural properties were predicted and analyzed: fractional free volume, fractional accessible volume, free volume morphology, free volume equivalent diameter, and free volume shape factor. The polymer chain mobility or flexibility was analyzed by radial distribution function (RDF), dihedral distribution, and mean square displacement.
To investigate the effect of varying the microstructure on the pervaporation separation performance, we focused on a polyimide membrane with different chemical structures. When the size of the substituted group of the membrane in the dry state was increased, the main chain flexibility decreased, the packing efficiency decreased, and large free volume space formed. In the substituted group, however, the side chain and the end group mobility increased, causing the small polymer chain to be packed in the as-prepared large free volume space; thus, the free volume size declined. The microstructure of the polyimide membranes under the swelling effect changed dramatically. The degree of the membrane swelling was in the following order: 9Ph-6FDA > TPA-6FDA > ODA-6FDA. In the 9Ph-6FDA membrane, the main chain mobility was dominant, and the TPA-6FDA membrane was affected by the nitrogen linkage in the diamine. The pervaporation separation performance results indicated that the ODA-6FDA membrane had the lowest swelling degree; as a result, it showed the highest water concentration in the permeate.
To improve the low permeation flux of a dense membrane, a polyamide composite membrane with different chemical structures was prepared by interfacial polymerization. The effect of varying the polyamide active layer microstructure on the pervaporation separation performance was also investigated. Swollen polyamide active layers indicated a longer o-Ps lifetime than dry polyamide active layers did. The RDF of atom pairs suggested that the side chain fluctuation in the swollen polyamide active layer of DAPE-tNBDC was greater than that in the DAPE-SCC. This greater fluctuation led to the formation of a more effective free volume in the former than in the latter. Furthermore, the FVSD analysis suggested that the active layer of the former had a larger free volume size than that of the latter. From the free volume shape analysis, the DAPE-SCC polyamide active layer had a larger Eeq value (0.8 to 1.0) than the DAPE-tNBDC polyamide active layer had. The results of free volume shape factor analysis indicated that the connected shape of free volume in the DAPE-tNBDC active layer was lower than that in the DAPE-SCC active layer. As such, the permeation fluxes for these active layers were close to each other; each flux was about 550 g/m2h.
Polyelectrolyte complex materials with high hydrophilic content and high ionic-crosslinking structure were used. The objectives were to investigate the effect of varying the microstructure of novel polyelectrolyte complex membranes on the pervaporation separation performance and to improve the water concentration in the permeate. The number of carbon in the polycation in the dry state was increased; as a result, the competition between the steric hindrance and the polymer chain mobility led first to the free volume size increase and then to its decrease. For the polycation in the wet state, the main chain mobility was inhibited by the long side chains, which reduced the packing efficiency. When the side chain mobility was increased, the number of carbon increased. As a result, the free volume size increased with the side chain length. Whether in the dry or the wet state, quenching and inhibition effects on the formation and annihilation of positronium occurred in the polyelectrolyte complex membrane because of the higher oxygen atomic concentration, which was associated with higher electron affinity, resulting in decreased free volume intensity. The pervaporation separation performance showed that the permeation flux increased and that the side chain length increased. However, the water concentration in the permeate slightly declined.
Through PALS and MD techniques, the apparent feasibility and the potential ability of conducting a microscale structure analysis of polymeric membranes showed good correlation with the pervaporation performance in dehydrating an aqueous ethanol solution.




論文目次 目錄
中文摘要 I
Abstract III
致謝 V
目錄 VII
圖索引 XII
表索引 XVI
第一章 緒論 1
1.1 前言 1
1.2 薄膜的定義 1
1.3 薄膜分離程序 3
1.4 薄膜結構型態 4
1.4.1 高分子多孔性薄膜 (Porous Membrane) 5
1.4.2 高分子緻密性薄膜 (Dense Membrane) 5
1.4.3 無機薄膜 (Inorganic Membrane) 5
1.4.4 有機/無機混成薄膜 (Organic/Inorganic Hybrid Membrane) 6
1.5 滲透蒸發 (Pervaporation, PV) 6
1.6 聚醯胺及聚醯亞胺高分子 8
1.6.1 聚醯胺(Polyamide, PA) 8
1.6.2 聚醯亞胺(Polyimide, PI) 11
1.7 界面聚合 (Interfacial Polymerization) 11
1.8 聚電解質錯合物 (Polyelectrolyte Complex) 12
1.9 複合薄膜之製備 14
1.9.1 基材膜之製備 14
1.9.2 緻密層之製備 15
1.10 正電子湮滅技術 15
1.10.1 正電子與電子偶素 16
1.10.2 正電子湮滅壽命與自由體積理論 18
1.10.3 正電子湮滅光譜 (Positron Annihilation Spectroscopy, PAS) 19
1.10.4 正電子光譜分析在高分子薄膜之應用 24
1.11 分子模擬(Molecular Simulation)技術 26
1.11.1 分子模擬之簡介 26
1.11.2 分子模擬在高分子薄膜之應用 28
1.12 研究動機與目的 29
第二章 實驗 31
2.1 實驗藥品 31
2.2 實驗儀器 33
2.3 薄膜製備 34
2.3.1 聚醯亞胺薄膜之製備 34
2.3.2 聚醯胺複合膜之製備 35
2.3.3 聚電解質錯合物複合膜之製備 36
2.4 薄膜鑑定 39
2.4.1 薄膜整體密度(Bulk density)測試 39
2.4.2 全反射式傅立葉轉換紅外線光譜儀(Attenuated Total Reflectance Fourier Transform Infrared spectroscopy, ATR-FTIR) 39
2.4.3 場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope, FE-SEM) 40
2.4.4 原子力顯微鏡 (Atomic Force Microscopy, AFM) 40
2.4.5 薄膜表面親疏水性測試 41
2.4.6 核磁共振儀 (Nuclear Magnetic Resonance, NMR) 41
2.4.7 正電子湮滅壽命光譜分析 (Positron Annihilation Lifetime Spectroscopy, PALS) 41
2.4.8 可變單一能量慢速正電子束分析儀 (Variable monoenergy slow positron beam, VMSPB) 43
2.4.9 滲透蒸發測試 (Pervaporation testing) 45
2.4.10 吸附測試 (Sorption testing) 46
2.5 實驗流程 48
第三章 模擬方法與理論 49
3.1 薄膜模型之建立 49
3.1.1 聚醯亞胺薄膜之模型 50
3.1.2 聚醯胺聚合層之模型 52
3.1.3 電解質錯合物之模型 54
3.2 分子作用力場 56
3.3 能量最小化與週期性邊界條件 59
3.3.1 能量最小化 59
3.3.2 週期性邊界條件 60
3.4 分子動態模擬 61
3.4.1 初始條件設定 61
3.4.2 系集 (NVT ensemble及NPT ensemble) 62
3.4.3 動態計算 62
3.5 物理量分析 64
3.5.1 自由體積(Fractional Free Volume, FFV)與容通體積分率(Fractional Accessible Volume, FAV) 64
3.5.2 徑向分佈函數分析(Radial Distribution Function, RDF) 65
3.5.3 均方位移分析(Mean Square Displacement, MSD) 65
3.5.4 自由體積大小及型態分析 66
3.5.5 扭曲角分佈分析 (Torsion Angle Distribution) 67
第四章 聚醯亞胺薄膜微結構變化對滲透蒸發效能之影響 68
4.1 前言 68
4.2 結果與討論 70
4.2.1 聚醯亞胺薄膜微結構變化之探討 70
4.2.2 聚醯亞胺薄膜之滲透蒸發效能 80
4.2.3 膨潤效應對聚醯亞胺薄膜微結構之影響 81
4.3 結論 86
第五章 聚醯胺複合膜微結構變化對滲透蒸發效能之影響 87
5.1 前言 87
5.2 結果與討論 88
5.2.1 聚醯胺複合膜微結構之預測 88
5.2.2 聚醯胺複合膜化學結構與型態之鑑定 91
5.2.3 聚醯胺複合膜之滲透蒸發效能 94
5.2.4 聚醯胺複合膜微結構與滲透蒸發效能之關聯 97
5.3 結論 106
第六章 聚電解質錯合物複合膜微結構變化對滲透蒸發效能之影響 107
6.1 前言 107
6.2 結果與討論 108
6.2.1 聚陽離子(Polycation)電解質之鑑定 108
6.2.2 聚電解質錯合物複合膜微結構之預測 112
6.2.3 聚電解質錯合物複合膜微結構之鑑定 115
6.2.4 聚電解質錯合物複合膜之滲透蒸發分離效能 124
6.3 結論 125
第七章 總結與未來展望 126
7.1 總結 126
7.2 未來展望 127
第八章 參考文獻 129
附綠 142
著作 143

圖索引
第一章
Figure 1-1 Schematic representation of various membrane cross-sectional morphologies. 2
Figure 1-2 Solution-diffusion mechanism of pervaporation. 7
Figure 1-3 Diagrams of polymer film growth at liquid interfaces [18]. 12
Figure 1-4 Schematic diagram of thin-film composite membrane [2]. 14
Figure 1-5 The decay scheme of 22Na [21]. 16
Figure 1-6 Schematic of positronium formation from positron [21]. 17
Figure 1-7 Schematic of positron and positronium annihilation [22]. 18
Figure 1-8 Correlation of o-Ps lifetime and free volume hole size for molecular solids and zeolites [22]. 19
Figure 1-9 Positron annihilation lifetime spectrum [24]. 20
Figure 1-10 Doppler broadening energy spectrum and definitions of S, W, and R (3γ/2γ ratio) parameters from DBES [25]. 22
Figure 1-11 Mean stopping distance (a) and stopping profiles (b) for positron as function of incident energy [38]. 24

第二章
Figure 2-1 Schematic representation of interfacial polymerization procedure of DAPE-SCC/mPAN and DAPE-tNBDC/mPAN TFC membranes. 36
Figure 2-2 Schematic diagram of chemical reaction and structures for synthesized polyamide from interfacial polymerization between DAPE reacting with SCC or tNBDC onto the surface of mPAN support. 36
Figure 2-3 Preparation of solution processable polyelectrolyte complex of CMCNa-PAVPm. 38
Figure 2-4 Bulk density instrument. 39
Figure 2-5 Schematic diagram of positron annihilation lifetime spectroscopy. 43
Figure 2-6 Variable monoenergy slow positron beam spectroscopy. (A) 50 mCi 22Na positron source, (B) W-mesh moderator, (C) magnetic field (70G) coils, (D) ExB filter, (E) positron accelerator, (F) correcting magnets, (G) gas inlet, (H) positron lifetime detector (MCP) for PAL, (I) turbo molecular pump, (J) samples, (K) sample manipulator, (L) ion pump, (M) Ge solid state detector, (N) lifetime detector (BaF2). 44
Figure 2-7 The schematic diagram of pervaporation apparatus. 46
Figure 2-8 The schematic diagram of sorption apparatus. 47

第三章
Figure 3-1 Schematic for membrane models construction. 49
Figure 3-2 Chemical structure and constructed repeat units for (a) ODA-6FDA, (b) TPA-6FDA, (c) 9Ph-6FDA. 50
Figure 3-3 Chemical structure and constructed repeat units for (a) DAPE-SCC, (b) DAPE-tNBDC. 53
Figure 3-4 Chemical structure and constructed repeat units for (a) polycation, and (b) polyanion. 55
Figure 3-5 Zeta potential of a series of polyelectrolyte complexes (PECs) solution (0.02% wt) 56
Figure 3-6 The bonding and non-bonding energy terms used in COMPASS force-field. 58
Figure 3-7 Schematic presentation of primary cell and image cell in the periodic boundary condition system. 61
Figure 3-8 Schematic presentation of (a) Verlet algorithm and (b) Leapfrog algorithm. 64
Figure 3-9 (a) Calculating of free volume size distribution based on equivalent diameter of free volume; (b) Calculating of free volume morphology based on free volume and its eccentricity definition in its corresponding ellipse. 66
Figure 3-10 Dihedral angle defined by three bond vectors (shown in orange, purple and green) connecting four atoms. 67

第四章
Figure 4-1 Chemical structure of polyimide membranes. (a) ODA-6FDA, (b) TPA-6FDA, (c) 9Ph-6FDA. 70
Figure 4-2 Size distribution of free volume with equivalent diameters for 6FDA-based polyimide membranes. 73
Figure 4-3 Free-volume in a cross-sectional image segment of a 6FDA-based polyimide models. Each segment has a thickness of 1.5 Å. (The blue color region refers to polymer chains, and the black color denotes the free-volume). 74
Figure 4-4 o-Ps lifetime distribution curves of 6FDA-based polyimide membranes at dry state. 76
Figure 4-5 Dihedral distribution of the dianhydride-diamine limkage (C-N) in 6FDA polyimide membrane models. 78
Figure 4-6 Dihedral distribution of the nitrogen likage (Ph-N) of diamine segment in TPA-6FDA and 9Ph-6FDA polyimide membrane models. 79
Figure 4-7 Dihedral distribution of the side chain and end chain of diamine segment in 9Ph-6FDA polyimide membrane model. 79
Figure 4-8 o-Ps lifetime distribution curves for 6FDA-based polyimide membranes at wet state. 82
Figure 4-9 Dihedral distribution of the dianhydride-diamine likage (C-N) in 6FDA polyimide membrane models at wet state. 83
Figure 4-10 Comparison of the dihedral distribution of the dianhydride-diamine linkage (C-N) in each polyimie membrane model at dry and wet states. (a) ODA-6FDA, (b) TPA-6FDA, (c) 9Ph-6FDA. 84
Figure 4-11 Comparison of the dihedral distribution of nitrogen likage (Ph-N) of diamine segment in (a) TPA-6FDA and (b) 9Ph-6FDA membrane models at wet states. 85

第五章
Figure 5-1 Chemical structure of diamine monomer (a) DAPE, and acyl chloride monomers (b) SCC, (c) tNBDC. 89
Figure 5-2 Three-dimensional representation of fractional accessible volume in DAPE-SCC (a,b) and DAPE-tNBDC (c,d) polyamide active layers: (a,c) dry state, (b,d) wet state. (Probe radius is 0.8 Å.) 90
Figure 5-3 Size distribution of free volume equivalent diameters for DAPE-SCC and DAPE-tNBDC polyamide active layers in wet state. 91
Figure 5-4 ATR-FTIR spectra of mPAN support and polyamide TFC membranes. (a) mPAN, (b) DAPE-SCC/mPAN, (c) DAPE-tNBDC/mPAN. 93
Figure 5-5 Cross-sectional SEM morphologies of mPAN support and polyamide TFC membranes. (a) mPAN, (b) DAPE-SCC/mPAN, (c) DAPE-tNBDC/mPAN. (x 100 k) 93
Figure 5-6 AFM images of polyamide TFC membranes. (a) DAPE-SCC/mPAN; (b) DAPE-tNBDC/mPAN. 96
Figure 5-7 S parameter as a function of positron incident energy for plasma-polymerized SiOxCyHz/polyamide/mPAN TFC membranes in dry and wet states. Liquid used to wet membrane: 90 wt% aqueous ethanol solution. 98
Figure 5-8 Radial distribution function of C-C atom pairs on main chains of DAPE-SCC and DAPE-tNBDC polyamide active layers in wet state. 103
Figure 5-9 Radial distribution function (RDF) of C-C pairs of norbornylene on side chains of DAPE-tNBDC polyamide active layers in dry and wet states: (a) Rescale range from 1 to 2 radius, (b) Rescale range from 3 to 18 radius. 104
Figure 5-10 Distribution of free volume equivalent eccentricity for DAPE-SCC and DAPE-tNBDC polyamide active layers. 105

第六章
Figure 6-1 Chemical structure of (a) PAVPm polycation, (b) CMCNa polyanion, (c) polyelectrolyte complex. 109
Figure 6-2 1-D spectra of PAVP2: (a) 1H NMR, (b) 13C NMR, and (c) DEPT-135. 109
Figure 6-3 2-D spectra of PAVP2: (a) H-H COSY and (b) C-H HSQC. 110
Figure 6-4 ATR-FTIR spectra of the quaternized PAVPm polycations 111
Figure 6-5 Free-volume in a cross-sectional image segment of a PECM model in the wet state; each segment has a thickness of 0.15 nm. (The blue color region refers to polymer chains, and the black color denotes the free-volume). 114
Figure 6-6 Free-volume equivalent diameter distributions for PECMs in wet state. 115
Figure 6-7 o-Ps lifetime distribution data for PECMs in dry state. 117
Figure 6-8 o-Ps lifetime distribution data for PECMs in wet state. 120
Figure 6-9 Radial distribution function (RDF) of C-C atom pairs in PAVPm. 122
Figure 6-10 Mean square displacements of PAVPm side chain. 122
Figure 6-11 Distribution of free volume equivalent eccentricity for PECMs in wet state. 123
Figure 6-12 Effect of alkyl chain length on pervaporation performance of PECMs in dehydrating ethanol aqueous solution. 124

表索引
第一章
Table 1-1 Develop of (technical) membrane processes [1]. 3
Table 1-2 Driving force and the two-phase systems separated by membranes for different membrane process[1]. 4
Table 1-3 Comparison of requirements for low-temperature and thermal polycondensation method [17]. 10

第三章
Table 3-1 MD simulation construction parameters for novel polyimide membrane models in dry state. 51
Table 3-2 MD simulation construction parameters for novel polyimide membrane models in wet state. 52
Table 3-3 Dry-state model construction parameters for MD simulation. 53
Table 3-4 Wet-state model construction parameters for MD simulation. 53
Table 3-5 MD simulation construction parameters for polyelectrolyte complex membrane models. 54

第四章
Table 4-1 Comparison of bulk density between experimental and simulation results. 71
Table 4-2 Fractional free volume (FFV) and fractional accessible volume (FAV) of polyimide membranes estimated by MD simulation technique and Bondi’s group contribution method. 72
Table 4-3 o-Ps lifetime (τ3), relative intensity (I3), free-volume radius (R) and fractional free volume (FFV) of 6FDA-based polyimide membranes. 75
Table 4-4 Effect of the chemical structure on pervaporation performance of 90 wt% ethanol aqueous solution through the 6FDA-based polyimide membranes at 25oC. 80
Table 4-5 o-Ps lifetime (τ3), relative intensity (I3), free-volume radius (R) and fractional free volume (FFV) of 6FDA-based polyimide membranes in wet state a). 81

Table 4-6 Comparison of fractional free volume (FFV) and fractional accessible volume (FAV) at dry and wet states. 82

第五章
Table 5-1 Comparison of the fractional free volume (FFV) at dry and wet states by the PAS and molecular dynamics simulation. 89
Table 5-2 Effect of chemical structure of acyl chloride monomer on pervaporation performance of polyamide TFC membranes for separating a 90 wt% aqueous ethanol solution at 25oC. 94
Table 5-3 Effects of chemical structure of acyl chloride monomer on surface roughness and affinity to feed solution component of polyamide TFC membrane. 96
Table 5-4 Data on o-Ps lifetime (τ3), relative intensity (I3), and free volume radius (R) for polyamide TFC membranes. 100

第六章
Table 6-1 Comparison of bulk density between experimental and simulation results of PECs. 112
Table 6-2 Fractional free volume (FFV), fractional accessible volume (FAV) and free volume (FV) of PECs models in the wet state. 113
Table 6-3 o-Ps lifetime (τ3), relative intensity (I3), and free-volume radius (R) data for PECMs in the dry state. 117
Table 6-4 o-Ps lifetime (τ3), relative intensity (I3), and free-volume radius (R) data for PECMs in the wet statea). 119

參考文獻 M.H.V. Mulder, Basic Principles of Membrane Technology, Kluer Academic Publisher, The Netherlands (1996).
[2] S.T. Hwang, K. Kammermeyer, Membrane in Separation, John Wiley & Sons, New York (1975).
[3] R.W. Baker, Membrane Technology and Applications, McGraw-Hill, New York (2004).
[4] R.Y.M. Huang, R. Pal, G.Y. Moon, Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two ply composite membranes supported by poly(vinylidene fluoride) porous membrane, Journal of Membrane Science, 167 (2000) 275-289.
[5] M.Y. Teng, K.R. Lee, D.J. Liaw, J.Y. Lai, Preparation and pervaporation performance of poly(3-alkylthiophene) membrane, Polymer, 41 (2000) 2047-2052.
[6] C.D. Jones, M. Fidalgo, M.R. Wiesner, A.R. Barron, Alumina ultrafiltration membranes derived from carboxylate–alumoxane nanoparticles, Journal of Membrane Science, 193 (2001) 175-184.
[7] T. Van Gestel, C. Vandecasteele, A. Buekenhoudt, C. Dotremont, J. Luyten, R. Leysen, B. Van der Bruggen, G. Maes, Salt retention in nanofiltration with multilayer ceramic TiO2 membranes, Journal of Membrane Science, 209 (2002) 379-389.
[8] M. Schleiffelder, C. Staudt-Bickel, Crosslinkable copolyimides for the membrane-based separation of p-/o-xylene mixtures, Reactive and Functional Polymers, 49 (2001) 205-213.
[9] J.P. Garcia Villaluenga, A. Tabe-Mohammadi, A review on the separation of benzene/cyclohexane mixtures by pervaporation processes, Journal of Membrane Science, 169 (2000) 159-174.
[10] A. Shepherd, A.C. Habert, C.P. Borges, Hollow fibre modules for orange juice aroma recovery using pervaporation, Desalination, 148 (2002) 111-114.
[11] P.A. Kober, PERVAPORATION, PERSTILLATION AND PERCRYSTALLIZATION.1, Journal of the American Chemical Society, 39 (1917) 944-948.
[12] L. Farber, Application of pervaporation, Science, 82 (1935).
[13] A.S. Hunter, E.G. Heisler, J. Siciliano, R.H. Treadway, Solute and temperature effects in the pervaporation of aqueous alcoholic solutions, Science, 124 (1956) 77-79.
[14] R.C. Binning, F.E. James, Now separate by membrane permeation, Petroleum Refiner, 37 (1958) 214-215.
[15] R.C. Binning, J.F. Jennings, E.C. Martin, U.S. Patent 3,035,060, (1962).
[16] W.F. Strazik, E. Perry, U.S. Patent 3,726,934, (1973).
[17] P.W. Morgan, Condensation polymers: by interfacial and solution methods, Interscience Publishers, New York (1965).
[18] P.W. Morgan, S.L. Kwolek, Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces, Journal of Polymer Science, 40 (1959) 299-327.
[19] L.T. Rozelle, J.E. Cadotte, C.K. E., C.V. Kopp Jr., Nonpolysaccharide membranes for reverse osmosis: NS-100 membranes, in S. Sourirajan (Ed.), Reverse Osmosis and Synthetic Membranes, National Research Council Canada, Ottawa (1977).
[20] C.D. Anderson, The Positive Electron, Physical Review, 43 (1933) 491-494.
[21] D.M. Schrader, Positron and Positronium Chemistry (Studies in Physical and Theoretical Chemistry), Jean, Y. C. Ed.; Elsevier Science Ltd Pub.: October, (1988).
[22] H.S. Nakanishi, J. Wang, Y.C. Jean, Positron Annihilation Studies of Fluids, Sharma, S. C., Ed. World Scientific: Singapore, (1988).
[23] S.J. Tao, Positronium Annihilation in Molecular Substances, The Journal of Chemical Physics, 56 (1972) 5499-5510.
[24] H. Chen, W.S. Hung, C.H. Lo, S.H. Huang, M.L. Cheng, G. Liu, K.R. Lee, J.Y. Lai, Y.M. Sun, C.C. Hu, R. Suzuki, T. Ohdaira, N. Oshima, Y.C. Jean, Free-Volume Depth Profile of Polymeric Membranes Studied by Positron Annihilation Spectroscopy:  Layer Structure from Interfacial Polymerization, Macromolecules, 40 (2007) 7542-7557.
[25] Y.C. Jean, P.E. Mallon, D.M. Schrader, Principles and Applications of Positron and Positronium Chemistry, Jean, Y. C., Eds.; World Scientific: Singapore, (2003).
[26] H. Cao, R. Zhang, J.P. Yuan, C.M. Huang, Y.C. Jean, R. Suzuki, T. Ohdaira, B. Nielsen, Free-volume hole model for positronium formation in polymers: surface studies, Journal of Physics: Condensed Matter, 10 (1998) 10429.
[27] J. Algers, R. Suzuki, T. Ohdaira, F.H.J. Maurer, Characterization of free volume and density gradients of polystyrene surfaces by low-energy positron lifetime measurements, Polymer, 45 (2004) 4533-4539.
[28] B.W. Rowe, S.J. Pas, A.J. Hill, R. Suzuki, B.D. Freeman, D.R. Paul, A variable energy positron annihilation lifetime spectroscopy study of physical aging in thin glassy polymer films, Polymer, 50 (2009) 6149-6156.
[29] C.H. Lo, J.K. Huang, W.S. Hung, S.H. Huang, M. De Guzman, V. Rouessac, C.L. Li, C.C. Hu, K.R. Lee, J.Y. Lai, Investigation on the variation in the fine structure of plasma-polymerized composite membrane by positron annihilation spectroscopy, Journal of Membrane Science, 337 (2009) 297-303.
[30] Y. J. Fu, H.z. Qui, K. S. Liao, S. J. Lue, C. C. Hu, K. R. Lee, J. Y. Lai, Effect of UV-Ozone Treatment on Poly(dimethylsiloxane) Membranes: Surface Characterization and Gas Separation Performance, Langmuir, 26 (2009) 4392-4399.
[31] S.H. Huang, W.S. Hung, D.J. Liaw, H.A. Tsai, G.J. Jiang, K.R. Lee, J.Y. Lai, Positron annihilation study on thin-film composite pervaporation membranes: Correlation between polyamide fine structure and different interfacial polymerization conditions, Polymer, 51 (2010) 1370-1376.
[32] S.H. Huang, C.J. Hsu, D.J. Liaw, C.C. Hu, K.R. Lee, J.Y. Lai, Effect of chemical structures of amines on physicochemical properties of active layers and dehydration of isopropanol through interfacially polymerized thin-film composite membranes, Journal of Membrane Science, 307 (2008) 73-81.
[33] S.H. Huang, W.L. Lin, D.J. Liaw, C.L. Li, S.T. Kao, D.M. Wang, K.R. Lee, J.Y. Lai, Characterization, transport and sorption properties of poly(thiol ester amide) thin-film composite pervaporation membranes, Journal of Membrane Science, 322 (2008) 139-145.
[34] C.L. Lai, S.H. Huang, W.L. Lin, C.L. Li, K.R. Lee, Influence of the aminothiol structure on pervaporation dehydration of poly(thiol ester amide) composite membranes, Journal of Membrane Science, 361 (2010) 206-212.
[35] S.H. Huang, W.S. Hung, D.J. Liaw, C.H. Lo, W.C. Chao, C.C. Hu, C.L. Li, K.R. Lee, J.Y. Lai, Interfacially polymerized thin-film composite polyamide membranes: Effects of annealing processes on pervaporative dehydration of aqueous alcohol solutions, Separation and Purification Technology, 72 (2010) 40-47.
[36] Y.C. Jean, W.S. Hung, C.H. Lo, H. Chen, G. Liu, L. Chakka, M.L. Cheng, D. Nanda, K.L. Tung, S.H. Huang, K.R. Lee, J.Y. Lai, Y.M. Sun, C.C. Hu, C.C. Yu, Applications of positron annihilation spectroscopy to polymeric membranes, Desalination, 234 (2008) 89-98.
[37] W.S. Hung, C.H. Lo, M.L. Cheng, H. Chen, G. Liu, L. Chakka, D. Nanda, K.L. Tung, S.H. Huang, K.R. Lee, J.Y. Lai, Y.M. Sun, C.C. Yu, R. Zhang, Y.C. Jean, Polymeric membrane studied using slow positron beam, Applied Surface Science, 255 (2008) 201-204.
[38] H. Cao, R. Zhang, C.S. Sundar, J.P. Yuan, Y. He, T.C. Sandreczki, Y.C. Jean, B. Nielsen, Degradation of Polymer Coating Systems Studied by Positron Annihilation Spectroscopy. 1. UV Irradiation Effect, Macromolecules, 31 (1998) 6627-6635.
[39] 黃書賢, 界面聚合聚醯胺複合薄膜應用於滲透蒸發分離程序之研究, 中原大學化工學系博士學位論文, (2008).
[40] S.H. Huang, C.L. Li, C.C. Hu, H.A. Tsai, K.R. Lee, J.Y. Lai, Polyamide thin-film composite membranes prepared by interfacial polymerization for pervaporation separation, Desalination, 200 (2006) 387-389.

[41] S.H. Huang, W.S. Hung, D.J. Liaw, C.L. Li, S.T. Kao, D.-M. Wang, M.D. Guzman, C.C. Hu, Y.C. Jean, K.R. Lee, J.Y. Lai, Investigation of Multilayer Pervaporation Membrane by Positron Annihilation Spectroscopy, Macromolecules, 41 (2008) 6438-6443.
[42] C.H. Yu, I. Kusumawardhana, J.Y. Lai, Y.L. Liu, PTFE/polyamide thin-film composite membranes using PTFE films modified with ethylene diamine polymer and interfacial polymerization: Preparation and pervaporation application, Journal of Colloid and Interface Science, 336 (2009) 260-267.
[43] 楊小震, 分子模擬與高分子材料, 科學出版社, 北京, (2002).
[44] D. Hofmann, M. Heuchel, Y. Yampolskii, V. Khotimskii, V. Shantarovich, Free Volume Distributions in Ultrahigh and Lower Free Volume Polymers:  Comparison between Molecular Modeling and Positron Lifetime Studies, Macromolecules, 35 (2002) 2129-2140.
[45] D. Hofmann, M. Entrialgo-Castano, A. Lerbret, M. Heuchel, Y. Yampolskii, Molecular Modeling Investigation of Free Volume Distributions in Stiff Chain Polymers with Conventional and Ultrahigh Free Volume:  Comparison between Molecular Modeling and Positron Lifetime Studies, Macromolecules, 36 (2003) 8528-8538.
[46] S.T. Kao, Y.H. Huang, K.S. Liao, W.S. Hung, K.S. Chang, M. De Guzman, S.H. Huang, D.M. Wang, K.-L. Tung, K.-R. Lee, J.-Y. Lai, Applications of positron annihilation spectroscopy and molecular dynamics simulation to aromatic polyamide pervaporation membranes, Journal of Membrane Science, 348 (2010) 117-123.
[47] K.S. Chang, Y.H. Huang, K.R. Lee, K.L. Tung, Free volume and polymeric structure analyses of aromatic polyamide membranes: A molecular simulation and experimental study, Journal of Membrane Science, 354 (2010) 93-100.
[48] X.Y. Wang, P.J. in 't Veld, Y. Lu, B.D. Freeman, I.C. Sanchez, A molecular simulation study of cavity size distributions and diffusion in para and meta isomers, Polymer, 46 (2005) 9155-9161.

[49] S. Urata, J. Irisawa, A. Takada, W. Shinoda, S. Tsuzuki, M. Mikami, Molecular Dynamics Study of the Methanol Effect on the Membrane Morphology of Perfluorosulfonic Ionomers, The Journal of Physical Chemistry B, 109 (2005) 17274-17280.
[50] Q.G. Zhang, Q.L. Liu, Y. Chen, J.Y. Wu, A.M. Zhu, Microstructure dependent diffusion of water–ethanol in swollen poly(vinyl alcohol): A molecular dynamics simulation study, Chemical Engineering Science, 64 (2009) 334-340.
[51] T. Liu, Q.F. An, Q. Zhao, K.R. Lee, B.K. Zhu, J.W. Qian, C.J. Gao, Preparation and characterization of polyelectrolyte complex membranes bearing alkyl side chains for the pervaporation dehydration of alcohols, Journal of Membrane Science, 429 (2013) 181-189.
[52] Y.F. Xu, R.Y.M. Huang, Pervaporation separation of ethanol–water mixtures using ionically crosslinked blended polyacrylic acid (PAA)–nylon 6 membranes, Journal of Applied Polymer Science, 36 (1988) 1121-1128.
[53] X.P. Zhao, R.Y.M. Huang, Pervaporation separation of ethanol–water mixtures using crosslinked blended polyacrylic acid (PAA)–nylon 66 membranes, Journal of Applied Polymer Science, 41 (1990) 2133-2145.
[54] K.R. Lee, R.Y. Chen, J.Y. Lai, Plasma deposition of vinyl acetate onto Nylon-4 membrane for pervaporation and evapomeation separation of aqueous alcohol mixtures, Journal of Membrane Science, 75 (1992) 171-180.
[55] J.Y. Lai, H.Y. Chen, Preparation and properties of vinyl acetate-grafted Nylon 6 membrane by using homografting method, Journal of Membrane Science, 66 (1992) 169-178.
[56] J.J. Shieh, R.Y.M. Huang, Preparation of N-methylol nylon-6 membranes for pervaporation of ethanol-water mixtures, Journal of Applied Polymer Science, 64 (1997) 855-863.
[57] R.Y.M. Huang, J.J. Shieh, Crosslinked blended poly(vinyl alcohol)/N-methylol nylon-6 membranes for the pervaporation separation of ethanol–water mixtures, Journal of Applied Polymer Science, 70 (1998) 317-327.

[58] A. Jonquières, C. Dole, R. Clément, P. Lochon, Synthesis and characterization of new highly permeable polyamideimides from dianhydride monomers containing amide functions: An application to the purification of a fuel octane enhancer (ETBE) by pervaporation, Journal of Polymer Science Part A: Polymer Chemistry, 38 (2000) 614-630.
[59] W.H. Chan, C.F. Ng, S.Y. Lam-Leung, X. He, O.C. Cheung, Water–alcohol separation by pervaporation through poly(amide-sulfonamide)s (PASAs) membranes, Journal of Applied Polymer Science, 65 (1997) 1113-1119.
[60] W.H. Chan, C.F. Ng, T.S. Lam, L.M. Leung, Synthesis, characterization, and pervaporation performance of random copolymers of poly(amidesulfonamide)s (PASAs), Journal of Applied Polymer Science, 70 (1998) 47-60.
[61] X. He, W.H. Chan, C.F. Ng, Water–alcohol separation by pervaporation through zeolite-modified poly(amidesulfonamide), Journal of Applied Polymer Science, 82 (2001) 1323-1329.
[62] W.H. Chan, C.F. Ng, S.Y. Lam-Leung, X. He, Pervaporation of aqueous ethanol solutionthrough poly(amidesulfonamide)s (PASAs) membranes, Polymer, 39 (1998) 2461-2467.
[63] W.H. Chan, C.F. Ng, S.Y. Lam-Leung, X. He, Water–alcohol separation by pervaporation through chemically modified poly(amidesulfonamide)s, Journal of Membrane Science, 160 (1999) 77-86.
[64] N. Tanihara, K. Tanaka, H. Kita, K.-i. Okamoto, Pervaporation of organic liquid mixtures through membranes of polyimides containing methyl-substituted phenylenediamine moieties, Journal of Membrane Science, 95 (1994) 161-169.
[65] J. Hao, K. Tanaka, H. Kita, K. Okamoto, The pervaporation properties of sulfonyl-containing polyimide membranes to aromatic/aliphatic hydrocarbon mixtures, Journal of Membrane Science, 132 (1997) 97-108.

[66] H. Wang, T. Ugomori, K. Tanaka, H. Kita, K.I. Okamoto, Y. Suma, Sorption and pervaporation properties of sulfonyl-containing polyimide membrane to aromatic/non-aromatic hydrocarbon mixtures, Journal of Polymer Science Part B: Polymer Physics, 38 (2000) 2954-2964.
[67] J. Fang, K. Tanaka, H. Kita, K.I. Okamoto, Synthesis of thianthrene-5,5,10,10-tetraoxide-containing polyimides via Yamazaki–Higashi phosphorylation method and their pervaporation properties to aromatic/nonaromatic hydrocarbon mixtures, Journal of Polymer Science Part A: Polymer Chemistry, 38 (2000) 895-906.
[68] G. Bahlakeh, M. Nikazar, M.J. Hafezi, E. Dashtimoghadam, M.M. Hasani-Sadrabadi, Molecular dynamics simulation study of proton diffusion in polymer electrolyte membranes based on sulfonated poly (ether ether ketone), International Journal of Hydrogen Energy, 37 (2012) 10256-10264.
[69] S. Yang, J. Qu, Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations, Polymer, 53 (2012) 4806-4817.
[70] H. Han, B. Liu, H. Yang, J. Shen, Effect of carbon sources on the photobiological production of hydrogen using Rhodobacter sphaeroides RV, International Journal of Hydrogen Energy, 37 (2012) 12167-12174.
[71] S. Velioğlu, M.G. Ahunbay, S.B. Tantekin-Ersolmaz, Investigation of CO2-induced plasticization in fluorinated polyimide membranes via molecular simulation, Journal of Membrane Science, 417–418 (2012) 217-227.
[72] C.H. Park, E. Tocci, Y.M. Lee, E. Drioli, Thermal Treatment Effect on the Structure and Property Change between Hydroxy-Containing Polyimides (HPIs) and Thermally Rearranged Polybenzoxazole (TR-PBO), The Journal of Physical Chemistry B, 116 (2012) 12864-12877.

[73] W. Fang, L. Zhang, J. Jiang, Polymers of intrinsic microporosity for gas permeation: a molecular simulation study, Molecular Simulation, 36 (2010) 992-1003.
[74] J.Z. Yang, Q.L. Liu, H.T. Wang, Analyzing adsorption and diffusion behaviors of ethanol/water through silicalite membranes by molecular simulation, Journal of Membrane Science, 291 (2007) 1-9.
[75] K.L. Tung, K.T. Lu, R.C. Ruaan, J.Y. Lai, MD and MC simulation analyses on the effect of solvent types on accessible free volume and gas sorption in PMMA membranes, Desalination, 192 (2006) 391-400.
[76] A. Soldera, Energetic analysis of the two PMMA chain tacticities and PMA through molecular dynamics simulations, Polymer, 43 (2002) 4269-4275.
[77] R.H. Gee, R.H. Boyd, Small penetrant diffusion in polybutadiene: a molecular dynamics simulation study, Polymer, 36 (1995) 1435-1440.
[78] F. Pan, F. Peng, L. Lu, J. Wang, Z. Jiang, Molecular simulation on penetrants diffusion at the interface region of organic–inorganic hybrid membranes, Chemical Engineering Science, 63 (2008) 1072-1080.
[79] X.Y. Wang, K.M. Lee, Y. Lu, M.T. Stone, I.C. Sanchez, B.D. Freeman, Cavity size distributions in high free volume glassy polymers by molecular simulation, Polymer, 45 (2004) 3907-3912.
[80] S.P. Nunes, K.V. Peinemann, Membrane Technology in The Chemical Industry, Wiley, Berlin (2003).
[81] J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, Journal of Membrane Science, 107 (1995) 1-21.
[82] B. Smitha, D. Suhanya, S. Sridhar, M. Ramakrishna, Separation of organic–organic mixtures by pervaporation—a review, Journal of Membrane Science, 241 (2004) 1-21.
[83] L. Li, S. Zhang, X. Zhang, G. Zheng, Polyamide thin film composite membranes prepared from 3,4′,5-biphenyl triacyl chloride, 3,3′,5,5′-biphenyl tetraacyl chloride and m-phenylenediamine, Journal of Membrane Science, 289 (2007) 258-267.
[84] L. Li, S. Zhang, X. Zhang, G. Zheng, Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-phenylenediamine, Journal of Membrane Science, 315 (2008) 20-27.
[85] E.S. Kim, Y.J. Kim, Q. Yu, B. Deng, Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF), Journal of Membrane Science, 344 (2009) 71-81.
[86] G.Y. Chai, W.B. Krantz, Formation and characterization of polyamide membranes via interfacial polymerization, Journal of Membrane Science, 93 (1994) 175-192.
[87] A.L. Ahmad, B.S. Ooi, Properties–performance of thin film composites membrane: study on trimesoyl chloride content and polymerization time, Journal of Membrane Science, 255 (2005) 67-77.
[88] C. Wu, S. Zhang, D. Yang, J. Wei, C. Yan, X. Jian, Preparation, characterization and application in wastewater treatment of a novel thermal stable composite membrane, Journal of Membrane Science, 279 (2006) 238-245.
[89] C. Wu, S. Zhang, D. Yang, X. Jian, Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane, Journal of Membrane Science, 326 (2009) 429-434.
[90] F. Yang, S. Zhang, D. Yang, X. Jian, Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane, Journal of Membrane Science, 301 (2007) 85-92.
[91] L. Hu, S. Zhang, R. Han, X. Jian, Preparation and performance of novel thermally stable polyamide/PPENK composite nanofiltration membranes, Applied Surface Science, 258 (2012) 9047-9053.
[92] C.L. Li, S.H. Huang, D.J. Liaw, K.R. Lee, J.Y. Lai, Interfacial polymerized thin-film composite membranes for pervaporation separation of aqueous isopropanol solution, Separation and Purification Technology, 62 (2008) 694-701.
[93] S.H. Huang, G.J. Jiang, D.J. Liaw, C.L. Li, C.C. Hu, K.R. Lee, J.Y. Lai, Effects of the polymerization and pervaporation operating conditions on the dehydration performance of interfacially polymerized thin-film composite membranes, Journal of Applied Polymer Science, 114 (2009) 1511-1522.
[94] Z. Yong, Y. Sanchuan, L. Meihong, G. Congjie, Polyamide thin film composite membrane prepared from m-phenylenediamine and m-phenylenediamine-5-sulfonic acid, Journal of Membrane Science, 270 (2006) 162-168.
[95] X.Z. Wei, L.P. Zhu, H.Y. Deng, Y.Y. Xu, B.K. Zhu, Z.M. Huang, New type of nanofiltration membrane based on crosslinked hyperbranched polymers, Journal of Membrane Science, 323 (2008) 278-287.
[96] L. Lianchao, W. Baoguo, T. Huimin, C. Tianlu, X. Jiping, A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane, Journal of Membrane Science, 269 (2006) 84-93.
[97] Y.H. La, R. Sooriyakumaran, D.C. Miller, M. Fujiwara, Y. Terui, K. Yamanaka, B.D. McCloskey, B.D. Freeman, R.D. Allen, Novel thin film composite membrane containing ionizable hydrophobes: pH-dependent reverse osmosis behavior and improved chlorine resistance, Journal of Materials Chemistry, 20 (2010) 4615-4620.
[98] C. Wang, C. Wu, Y. Wu, J. Gu, T. Xu, Polyelectrolyte complex/PVA membranes for diffusion dialysis, Journal of Hazardous Materials, 261 (2013) 114-122.
[99] A. Bhide, M. Schönhoff, C. Cramer, Cation conductivity in dried poly(4-styrene sulfonate) poly(diallydimethylammonium chloride) based polyelectrolyte complexes, Solid State Ionics, 214 (2012) 13-18.
[100] K. Hoffmann, B. Tieke, Layer-by-layer assembled membranes containing hexacyclen-hexaacetic acid and polyethyleneimine N-acetic acid and their ion selective permeation behaviour, Journal of Membrane Science, 341 (2009) 261-267.
[101] A. Toutianoush, A. El-Hashani, J. Schnepf, B. Tieke, Multilayer membranes of p-sulfonato-calix[8]arene and polyvinylamine and their use for selective enrichment of rare earth metal ions, Applied Surface Science, 246 (2005) 430-436.
[102] S.U. Hong, R. Malaisamy, M.L. Bruening, Optimization of flux and selectivity in Cl−/SO42− separations with multilayer polyelectrolyte membranes, Journal of Membrane Science, 283 (2006) 366-372.
[103] W. Jin, A. Toutianoush, B. Tieke, Use of Polyelectrolyte Layer-by-Layer Assemblies as Nanofiltration and Reverse Osmosis Membranes, Langmuir, 19 (2003) 2550-2553.
[104] L.A. Bauer, D.H. Reich, G.J. Meyer, Selective Functionalization of Two-Component Magnetic Nanowires, Langmuir, 19 (2003) 7043-7048.
[105] M.D. Miller, M.L. Bruening, Controlling the Nanofiltration Properties of Multilayer Polyelectrolyte Membranes through Variation of Film Composition, Langmuir, 20 (2004) 11545-11551.
[106] M.M. Hasani-Sadrabadi, E. Dashtimoghadam, N. Mokarram, F.S. Majedi, K.I. Jacob, Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application, Polymer, 53 (2012) 2643-2651.
[107] S. Yılmaztürk, T. Gümüşoğlu, G.A. Arı, F. Öksüzömer, H. Deligöz, Fabrication and performance of catalyst-coated membranes by layer-by-layer deposition of catalyst onto Nafion for polymer electrolyte membrane fuel cells, Journal of Power Sources, 201 (2012) 88-94.
[108] J. Wang, C. Zhao, H. Lin, G. Zhang, Y. Zhang, J. Ni, W. Ma, H. Na, Design of a stable and methanol resistant membrane with cross-linked multilayered polyelectrolyte complexes for direct methanol fuel cells, Journal of Power Sources, 196 (2011) 5432-5437.
[109] E. Dashtimoghadam, M.M. Hasani-Sadrabadi, H. Moaddel, Structural modification of chitosan biopolymer as a novel polyelectrolyte membrane for green power generation, Polymers for Advanced Technologies, 21 (2010) 726-734.
[110] C. Hu, B. Li, R. Guo, H. Wu, Z. Jiang, Pervaporation performance of chitosan–poly(acrylic acid) polyelectrolyte complex membranes for dehydration of ethylene glycol aqueous solution, Separation and Purification Technology, 55 (2007) 327-334.
[111] Y. Li, H. Jia, Q. Cheng, F. Pan, Z. Jiang, Sodium alginate–gelatin polyelectrolyte complex membranes with both high water vapor permeance and high permselectivity, Journal of Membrane Science, 375 (2011) 304-312.
[112] F. van Ackern, L. Krasemann, B. Tieke, Ultrathin membranes for gas separation and pervaporation prepared upon electrostatic self-assembly of polyelectrolytes, Thin Solid Films, 327–329 (1998) 762-766.
[113] W. Lenk, J. Meier-Haack, Polyelectrolyte multilayer membranes for pervaporation separation of aqueous-organic mixtures, Desalination, 148 (2002) 11-16.
[114] M. Yin, J. Qian, Q.F. An, Q. Zhao, Z. Gui, J. Li, Polyelectrolyte layer-by-layer self-assembly at vibration condition and the pervaporation performance of assembly multilayer films in dehydration of isopropanol, Journal of Membrane Science, 358 (2010) 43-50.
[115] Q. Zhao, J. Qian, Q. F. An, Z. Gui, H. Jin, M. Yin, Pervaporation dehydration of isopropanol using homogeneous polyelectrolyte complex membranes of poly(diallyldimethylammonium chloride)/sodium carboxymethyl cellulose, Journal of Membrane Science, 329 (2009) 175-182.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-02-27起公開。


  • 學期間:週一~週五 8:30-12:00 am;1:30-5:00 pm
    寒暑假:週一~週四 9:00-12:00 am;1:30-4:30 pm
    聯絡電話:03-2652855 或 03-2652851
    電子郵件:lib.thesis@cycu.edu.tw